

INDIAN SCHOOL MUSCAT
 PRACTICE PAPER -2 - (2018-19)
 MATHEMATICS (041)

CLASS XII

SECTION A

Questions 1 to 4 carry 1 mark each.

1. Find the value of $m+n$, where m and n are order and degree of differential equation

$$
\frac{4\left(\frac{d^{2} y}{d x^{2}}\right)^{3}}{\frac{d^{3} y}{d x^{3}}}+\frac{d^{3} y}{d x^{3}}=x^{2}-1
$$

2. Given a square matrix A of order $3 X 3$ such that $|A|=12$, find the value of $|A \operatorname{adj} A|$
3. If $y=\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}$, find $\frac{d y}{d x}$
4. Find the direction cosines of the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$

OR

If a line makes angles $90^{\circ}, 60^{\circ}$ and θ with x, y and z - axes respectively, where θ is acute, then find θ

SECTION B

Questions 5 to 12 carry 2 marks each

5. If the binary operation $*$ on the set z of integers is defined $b y a * b=a+b-5$, then write the identity element for the operation $*$ in z .
6. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, find k so that $A^{2}=5 A+k I$
7. Find $\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x$
8. Find $\int \frac{(x-4)}{(x-3)^{2}} e^{x} d x$ OR Find $\int \frac{\sin x}{\sin (x+a)} d x$
9. Form the differential equation representing the family of curves $y=a \sin (x+b)$
10. If $|\vec{a}|=|\vec{b}|$ and angle between \vec{a} and \vec{b} is 60° and $\vec{a} \cdot \vec{b}=\frac{1}{2}$, then find $|\vec{a}|$

If two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=\frac{1}{2}$, then find the value of $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$
11. A pair of dice is thrown find the probability of getting a sum of 10 or more, if 5appears on the first die.

OR

Two persons A and B appear in an interview for two vacancies for the same post. The probability that A will be selected is $\frac{1}{5}$ and B will be selected is $\frac{1}{4}$. What is the probability that
(i) Any one of them will be selected. (ii) Atleast one of them will be selected.
12. A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B. If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.

SECTION C

Questions 13 to 23 carry 4 marks each

13. Solve for x
$\tan ^{-1}\left(\frac{x-3}{x-4}\right)+\tan ^{-1}\left(\frac{x+3}{x+4}\right)=\frac{\pi}{4}$
14. Let N denote the set of all natural numbers and R be the relation on NxN defined by $(a, b) R(c, d)$ if $a d(b+c)=b c(a+d)$. Show that R is an equivalence relation.

OR

Consider $f: R_{+} \rightarrow(-9, \infty)$ given by $f(x)=5 x^{2}+6 x-9$. Prove that f is invertible with $f^{-1}(y)=\frac{\sqrt{5 y+54}-3}{5}$
15. Using properties of determinants, Prove that

$$
\left|\begin{array}{lll}
b+c & c+a & a+b \\
q+r & r+p & p+q \\
y+z & z+x & x+y
\end{array}\right|=2\left|\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right|
$$

16. If $y=(\log x)^{x}+x^{\log x}$, find $\frac{d y}{d x}$

OR

Differentiate $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect to $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
17. If $y=a \cos (\log x)+b \sin (\log x)$, then show that $x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)+x\left(\frac{d y}{d x}\right)+y=0$
18. Find the equation of the tangent to the curve $y=\sqrt{3 x-2}$ which is parallel to the line
$4 x-2 y+5=0$
19. Find $\int \frac{2 x+5}{\sqrt{7-6 x-x^{2}}} d x$
20. Using properties of definite integrals evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
21. If $\mathrm{y}(\mathrm{t})$ is a solution of $(1+t) \frac{d y}{d x}-t y=1$ and $\mathrm{y}(0)=-1$, then show that $\mathrm{y}(1)=\frac{-1}{2}$

OR

Find the general solution of the differential equation
$\left[\tan ^{-1} x-y\right] d x=\left(1+x^{2}\right) d y$
22. Find the value of λ, if 4 points with position vectors $3 \hat{i}+6 \hat{j}+9 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}, 2 \hat{i}+3 \hat{j}+\hat{k}$ and $\hat{i}+6 \hat{j}+\lambda \hat{k}$ are coplanar.
23. Find the coordinates of the foot and length of the perpendicular drawn from a point
$\mathrm{A}(2,-1,5)$ to the line $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}$

SECTION D

Questions 24 to 29 carry 6 marks each
24. If $A=\left[\begin{array}{ccc}3 & 1 & 2 \\ 3 & 2 & -3 \\ 2 & 0 & -1\end{array}\right]$, find A^{-1}

Hence, solve the system of equations $3 x+3 y+2 z=1 ; x+2 y=4 ; 2 x-3 y-z=5$

OR

Find the inverse of the following matrix using elementary transformations

$$
\left[\begin{array}{ccc}
2 & -1 & 3 \\
-5 & 3 & 1 \\
-3 & 2 & 3
\end{array}\right]
$$

25. Show that the semi-vertical angle of a right circular cone of given total surface area and the maximum volume is $\sin ^{-1}\left(\frac{1}{3}\right)$
26. Make a rough sketch of the region given below and find its area using methods of integration : $\left\{(x, y): 0 \leq y \leq x^{2}+3,0 \leq y \leq 2 x+3,0 \leq x \leq 3\right\}$.

OR

Sketch the graph of $f(x)=\left\{\begin{array}{l}|x-2|+2, x \leq 2 \\ x^{2}-2, x>2\end{array}\right.$.Evaluate $\int_{0}^{4} f(x) d x$. What does the value of this integral represent on the graph?
27. Find the equation of a plane through the line of intersection of the planes $2 x+y-z=3$ and $5 x-3 y+4 z+9=0$ and parallel to a line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$

OR

Find the equation of the plane passing through three points $\mathrm{A}(3,-1,2), \mathrm{B}(5,2,4)$ and $\mathrm{C}(-1,-1,6)$. Also find the distance of the point $\mathrm{P}(6,5,9)$ from the plane.
28. Suppose a girl throws a die. If she gets a 5 or 6 , she tosses a coin three times and notes the number of heads. If she gets $1,2,3$ or 4 , she tosses a coin once again and notes whether a head or tail is obtained. If she obtained exactly two heads what is the probability that she threw $1,2,3$ and 4 with a die?
29. A small firm manufactures gold rings and chains. The total number of rings and chains manufactured per day is at most 24. It takes 1 hour to make a ring and 30 minutes to make a chain. The maximum number of hours available per day is 16 . If the profit on a ring is ₹ 300 and that on a chain is $₹ 900$, find the number of rings and chains that should be manufactured per day, so as to earn the maximum profit. Make it as an L.PP and solve it graphically.

